Spiderbot’s new dual extruder based 3D Printer


Spiderbot, a small French company has enjoyed popularity amongst private, academic and business customers with their current model of the SpiderBot Delta 3D printer. This printer can work with ABS en PLA materials and has a printing capability of 18 cm wide by 18 cm tall. It’s success is largely thanks to innovations to their original extrusion system. For while most printers include an extruder with six attachment points, their SpiderBot Delta on has three, thanks to their TSS system.

This system, short for Three Sphere System, consists of a combination of three spherical magnets and six carbon tubes that move the extrusion head with great precision. As two tubes are attached to one magnet, the support plate doesn’t tilt or wobble. Not only does this system allow for perfect positioning of the extrusion head, the magnetic connection can also be easily broken by applying the right amount of force, allowing for easy maintenance.

Now, Spiderbot is aiming to build a printer that transfers this effective method to a double extrusion system. And after almost a year of developing, designing and testing, numerous mishaps and 7 prototypes, they have settled for a particular system of rotating nozzles. This design aims to avoid any contact between the nozzles and the printed filament, even when they are rotating and switching positions. While some testing is still on-going, the innovative couple are confident that they will be able to release their latest model before the end of the year; the beta tests are already planned.

What is the new Innovation?

As explained by Spiderbot – “Important improvements have been made compared to a standard dual head and the earlier shown design. We discovered that the second head often touched the object when printing and even if you retract the material of the inactive nozzle, there is often a small amount of material on the nozzle tip that can leave traces, to prevent this, a radical design change was required, we came up with a completely new dual head with rotating support and inclinated nozzles, which will avoid the unused nozzle hitting the object during printing.

So effectively, when head #1 is printing material , the second head is rotated away from the print area and can’t damage or mark the object and vice versa, when head #2 is printing support material, head#1 will be rotated away. 

More information on this subject, can be found here.

Ricoh hopes to enter 3D printing market by 2016

Ricoh, Japan’s leading multinational imaging and electronics will set up two offices in Kanagawa Prefecture by the end of September, one in Yokohama and the other in Atsugi, to sell 3D printers supplied by global leader Stratasys, 3D Systems and others. Ricoh will also offer prototype services, where they use 3D printing to create objects based on customer data.

Ricoh hopes to bring its own 3D printers to the market in 2016. The printers are expected to be priced at around 5 million yen to 20 million yen ($46,900 to $187,670) and targeting at the small and medium businesses.

Ricoh aims to reach annual sales of $2.8 billion for its new 3D printer business, including its own products. The company said that it will start research and development of 3D printing technology based on its inkjet and other printing technologies.

Ricoh isn’t the only imaging and electronics company in Japan with big plans for 3D printing; both Canon and Seiko Epson plan to roll out 3D printers within the next five years. Canon has already developed a 3D printer prototype, and is pursuing a high-precision technology for producing complex shapes. Canon Marketing, part of the Canon group, has also joined 3D Systems’ network of resellers to market and sell its professional 3D printers, including its direct metal printers, in Japan.

Seiko Epson, a well-known brand for energy-saving and high-precision home printer, is likely working on developing industrial, multi-material 3D printers for commercial applications – such as in large-scale production environments. Epson expects that it will launch its first industrial 3D printer within 5 years.

Last day of display for these 3D printed Ganesha Idols

Lord Ganesha is a widely worshipped deity in the Hindu pantheon. His image is found throughout India and Nepal. Ganesha is widely revered as the god of beginnings, the deva of intellect and wisdom and honored at the start of rituals and ceremonies. Citizens of Bangaluru, India can treat themselves to a very distinctive display of Lord Ganesha. For the first time in India, a 3D Printed Ganesha idols are being displayed at M.G Road Metro Station’s “Rangoli – Metro Art Centre”. Today is the last day of the display – 7th Sept 2014.

The 3D printed Ganesha consists of 8 idols, inspired by temples in Maharashtra, like Ashtavinayak, Siddivinayak etc. All the idols were created exclusively through professional 3D printers, which are capable of capturing every intricate detail in the idol. The Ganesha models are created by 3D scanning the idols & then printed in Stratasys FDM (Fused Deposition Modelling) & Polyjet technology based 3D Printers. The project is initiated by Bangalore based Altem Technologies, a pioneer in professional 3D printers in India and a strategic vision partner of Stratasys. It was also awarded the India SME 100 Award for 2013-14 in the IT/ITES segment.

Mr. Prasad Rodagi, Founder Director of ALTEM Technologies said, “Lord Ganesha is widely revered as the remover of obstacles, and as the god of intellect and wisdom. Being the god of beginnings, he is worshiped at the start of rituals and ceremonies. 3D Printing is a technology used right in the beginning of the engineering design cycle to overcome flaws in design & development of new products. Invariably, any product takes 3D Printed form before taking its commercial avatar. Additionally, an idol of Ganesha is one of the most intricate idols in India, which can give the viewer can excellent idea about the possibilities of 3D Printing. Hence, Lord Ganesha is being 3D Printed in this scale for the first time in the country.”

The Catalyst Frame Microscope – another miracle of 3D printing

3D printing is revolutionizing the standards of living by a great degree, and here we have another example, to show the true power, might and potential of 3D printing. Jing Luo, an American entrepreneur, who also hold a Graduate degree from University of California (Berkeley), is in the process of producing a portable, user-friendly and accurate microscope that works through your smartphone.

Does Jing Luo, have a Working Prototype?

Luo is currently on the fourth prototype of the Catalyst Frame Microscope, as he has called his creation. This simple construction attaches to the back of your smartphone and works through your camera software. The lens incorporated in this microscope has a magnification range of 30/50/170 or 30/170/340, dependent on the quality of your camera.

What is the Range of Magnification?

As Luo explains – ‘Magnification combines with a multiplicative effect, so if you were to combine a 2x lens with a 3x lens you’d get a total of 6x. The same applies here, the 340x optical magnification combines with the 4.5x digital magnification to get a total of 1530x magnification.’

This means that the range of magnification truly depends on the maximum digital magnification potential of your smartphone’s camera. Looking at ongoing trends in the Smartphone market, every other day new phones are arriving with better cameras, so that makes the range of this Catalyst Frame Microscope, virtually infinite!

However, the images cannot be infinitely magnified; past the maximum resolution the sight will just become blurry, but the creator hopes that this will change, with future models.

The current construction, does however, enable just about the best magnification a portable microscope can offer. It is aimed at (biology) enthusiasts, doctors, scientists in developing countries, and people working outside laboratories, and runs on two AAA batteries which are just about universally available.

For more information and to be a part of the Crowdfunding campaigns, please follow the links below;

Kickstarter Campaign

Indiegogo Campaign

Note: Url’s above have been shortened with the help of P.PW URL Shortening Service, they are Clean and Safe to browse

Sintratec – Affordable SLS 3D printer to be launched soon…


A few days ago, we reported the launch of Ice9 and Ice1 3D printers by Norge Systems, these SLS 3D printers, as proclaimed by Norge Systems – “are the first truly affordable SLS 3D printers for small and medium businesses”. However, as it seems, Norge is not the only contender on the affordable SLS 3D printers, stable.

Sintratec – a Switzerland based company is currently developing a desktop DIY SLS 3D printer, and the forecasted price is almost ½ of the Ice1, which is Norge Systems cheapest model.

What is a SLS 3D Printer?

“Selective Laser Sintering” is one of the oldest 3D printing technology around. It uses laser as the power source to sinter powdered material to create a solid structure. Unlike some other additive manufacturing processes, such as fused deposition modeling (FDM), SLS does not require support structures and can produce parts with fine details.

While there are many desktop 3D printers on the market, most of these printers use a FDM method, not SLS. SLS is often more expensive than FDM machine: a professional SLS 3D printer starts at around 200,000€.

About Sintratec and the Launch:

Sintratec is a Switzerland based company, founded by electrical engineers Joscha Zeltner, Christian Von Burg, and Dominik Solenicki. The Trio have been working on this DIY SLS 3D printer project since 2012.

Sintratec plans to launch a crowdfunding campaign on Indiegogo in October 2014, with a price that everyone can afford: 3,999€ ($5,277) for backers. Their goal is to raise money to ship at least 60 of the SLS 3D printer kits worldwide.

Do they have a DIY SLS 3D Printer Prototype?

Sintratec does have a working DIY SLS 3D printer prototype, up its sleeves. The current prototype, code named –”Bobby”, is built in sturdy aluminium, foam glass and steel and features 130mm cubed print volume. One main feature to keep the cost down is that they use a compact diode laser intead of CO2 laser commonly used in current SLS 3D printers. Sintratec’s prototype DIY SLS 3D printer uses a diode laser (445nm, blue) with an output power of over 2W. To get a good laser spot they use also beam correction optics. The compact diode laser is much cheaper than CO2 laser and pumps solid-state lasers in the visible spectral region for a more safe operation.

This is all we have for now, for more updates on Sintratec and their new DIY SLS 3D printer, please follow their website.

Note: URL links above have been shortened with “p.pw” – URL Shortening Service. They are clean and safe to browse.

Worlds first 3D printed elbow replacement

A new medical application for 3D printing technology was recently successfully implemented in the academic hospital of the Jilin University in Changchun, Northern China. In this case, a specifically developed 3D printed elbow was surgically implemented in the arm of a 48-year-old woman suffering from rheumatoid arthritis. This is the first case ever where 3D printing technology has been successfully used in elbow replacement surgery.

The 48-year-old Leng Cai Feng, a farm worker, had been living from this condition for more than twenty-five years. She explained that this did not bother her at all when it was first diagnosed. ‘It is common for farm workers to have rheumatoid arthritis, and I did not really care about it in at the beginning. It was not a serious handicap, and while I always had sore joints during spring and autumn, it did not affect my work.’

However, her condition worsened considerably three years ago. Leng explained that she suddenly became completely unable to move her knee and elbow, while her entire right her arm became stiff and almost impossible to move. Her left side, meanwhile, became only capable of performing very simple movements and activities. Furthermore, her left elbow and knee became covered in lesions. All this severely affected the quality of her life, as it left her almost entirely paralyzed and unable to take care of herself. She spent her days lying bed, relying on her family to feed her.

Having ran of options, she was admitted to the orthopaedic department of Changchun’s academic hospital of Jilin University. There, doctor Chen Bingpeng diagnosed her and arranged for her to undergo bilateral knee replacement surgery. While this several elevated her walking difficulties –she was able to walk again within twenty days – her arms seemed like a hopeless case. Damage to her elbows and bone structure was severe, which made it virtually impossible to properly implement conventional prosthetic joints.

As Leng explained, she thought it was simply ‘game over’ for her arms. However, she came into contact with Orthopaedic Hospital Professor Wang JinCheng soon afterwards, who convinced her to cooperate in a 3D printing experiment. He explained to her that ‘3D printing technology can achieve the positive postoperative results for a bilateral elbow replacement surgery that conventional prosthetics can’t.’

After repeated testing with prostheses in practise scenarios, her bilateral elbow replacement surgery was successfully completed in early May of this year. The 3D printed elbow prosthesis exactly matched Leng Cai Feng’s bone structure, and all the steps the surgeons practised were a success.

Surgery began in the patient’s right arm, with an incision of approximately 10 cms across her elbow. Professor Wang Jincheng carefully separated the patient’s anconeus and triceps muscles, before removing the distal end of her humurus and the upper end of her ulna. The surgeon explained that these parts of the elbow were seriously deformed due to the patient’s condition. These where then replaced with the 3D printed prosthesis. After some stitching, the surgery was complete.

Her recovery was also quick. ‘Just five days after the surgery, I could drink from the cup I could hold myself.’ Leng said. She has since recovered completely and the quality of her life has severely been improved. As she excitedly explained, ‘I can freely move my arms, I can work and cook!’

This successful surgery is another pioneering step that 3D printing technology has brought to the medical profession. As Professor Wang explained, ‘The success of the operation was not only the first time 3D printing technology was used in this academic hospital, but also the first time this technology was every used for artificial joint elbow replacement surgery. It’s a world record.’

The successful surgeon went on to emphasize the many positive aspects attached to 3D printing technology. ‘Bilateral elbow 3D printing is a customized order. Just like tailor-made cloths are a better fit than store-bought mass productions, prosthetics are the best match.’ To achieve this, they made a three-dimensional CT scan of the patients limbs, and sent that data to a Beijing-based prosthesis production factory. There, the data was entered into the computer and titanium powder was precisely crafted to fit the patient’s bone structure.

‘Another advantage of 3D printed joints is that we can use a skeletal model of the 3D printed joint to examine all stages of the surgery. We effectively carried out the operation in vitro. This greatly shortens the operation time, and reduces patient pain and the number risks involved’, Wang said.

However, he goes on to emphasize that using 3D printing technology is still quite expensive to use in medical situations. ‘because it is a new technology, pricing will be involved in all aspects of the process, such as machine costs, production time, design, etc. In general, it is still more expensive that the traditional technologies that are used for prostheses.’

The professor nonetheless feels that this technology very useful and will be extensively used in the future, as it is very suitable for diseased joints that are usually uniquely shaped in every particular situation. Furthermore, Wang believes that surgery costs for operations that involve 3D printing will likely be reduced as the technology matures.

The new Alta 3D printer from Polarworks

Polarworks, the company behind the Alta 3D printer, is the collaborative effort of Norwegian production and design company Bengler, mechanical engineer Thomas Boe-Wiegaard and industrial design students Hans Jakob Føsker and Alexandre Chappel. The launch of Polarworks was announced in early 2014, along with its intention of developing an ‘extravagantly simple and efficient 3D printer’. Things have been quiet since then, until a promising prototype was revealed at last weekend’s Maker Faire Trondheim.

What was shown, was the prototype of a simple but elegantly designed printer, that is quiet and unorthodox. There is no X and Y axis, as it shifts all the mechanical complexities that accompanies their movement to software. Instead, those movements are all executed by a single linear arm and a rotational disk. And interestingly, the Alta Polarworks should be compatible with all usually used software and STL formats.

The ambition to build this printer grew out of the simple but highly adaptable software GRBL, written by Bengler’s in-house ‘tinkerer’ Simen Svale Skogsrud. This software quickly became a staple for various ‘maker machines’ like laser cutters and writing hardware, but is also used for operating various CNC mills and the popular and open source 3D firmware Marlin. ‘It [GRBL] worked for us – it ran a little CNC mill we used to have in our office – and has also worked for hundreds of other DIY projects that shape by cutting with metal, burning with lasers or laying down minute quantities of molten plastic.’

However, Simen has long since wanted to incorporate it into 3D printers which could be, or so he felt, constructed much easier. ‘He came upon the idea of using two rotational axis instead of a gantries for the X and Y axis. This cuts part count radically and makes the printer nearly silent. No linear bearings, no timing belts, no gears. Just a few slabs of solid metal and precision motors. It also looks excellent when the printer draws a completely straight line by twisting around.’

In the past few months, the team behind Polarworks have been silently trying to realize this printer, after students Føsker and Chappel, along with engineer Boe-Wiegaard blew new life into their ambition.

And while both the design and the promises made are certainly drawing our attention, we’ll have to wait for more pictures and promotional videos before we can endorse the Alta Polarworks’ innovations. Their Kickstarter – that will be aiming for approximately $1500 – will start within the next few months, so we hope to be able to present an update on this interesting 3D printer in the near future.

Bill SB 808 on 3d printed Ghost guns, passed in california

In Sacramento, California, the senate bill SB 808 has been passed by both the Assembly and the Senate, and has now been sent to California Governor and Democrat Jerry Brown for review. Bill SB 808, that was introduced by Democratic State Senator Kevin de Leon, aims to update existing firearm legislation to ensure that so-called ‘ghost guns’ are subject to similar legislation as ‘traditional’ firearms.

These ghost guns can currently be constructed in the privacy of your own home using 3D printers, but are as potentially lethal as other firearms. Their existence became worldwide news in 2013, though various examples are currently floating around the internet. Most of these can be relatively easily made from various plastic construction materials and printed on common 3D printers like RepRap or Makerbot.

The SB 808 bill aims to severely restrict those practices, however. As State Senator and driving force behind this bill, Kevin de Leon, explained on his website:

SB 808 holds those assembling personal guns to the same standard as all other gun owners by requiring a background check, a serial number to be obtained from the Department of Justice, and the gun must be registered with the Department of Justice. In order to receive a serial number, a self-made or assembled firearm must include permanent metal components that cannot be detached and that are detectable as required by existing law.

The bill will thus try to bring these weapons and their owners out of the shadows, and in that it is part of a growing effort throughout the world to pre-empt the spread of these home-made and undetectable firearms. The past few months, we have reported on various governmental crackdowns on 3D printed guns in, for instance, Japan.

However, The US’s current federal legislation concerning 3D printed guns – the Undetectable Firearms Act of 1988 – has been renewed unchanged in 2013. That legislation does make it illegal to own firearms that can slip past metal detectors, but does not include any provisions on the manufacturing of plastic firearms. California lawmakers are thus trying to go one step further than existing federal legislation through their introduction of registrations and background checks.

The exact amendments that this bill would make to existing gun legislation in California can be found here. Senator Kevin de León explained his motivation for curtailing 3D printed weapons on his website: “Technological advancements require that we update our laws to meet new and growing public safety concerns to make sure dangerous individuals cannot manipulate technologies at the expense of public safety.”

As this is bill isn’t law yet, it remains unclear how 3D printed guns will be exactly regulated. Nonetheless, California’s lawmakers hope that they will able to play a leading role in curtailing illegal guns throughout the United States. Amanda Wilcox, who is part of the Brady Campaign to Prevent Gun Violence applauded their intentions, stating that, ‘It is essential that self-assembled or manufactured guns be regulated. Assembling rifles from “partial receivers” to evade the background check and record requirements threatens public safety. We applaud the legislature for addressing this problem.’

Smit Röntgen – Philips introduce pure tungsten components

Tungsten, also known as wolfram, is a hard, robust, rare metal and has the highest melting point of all the elements. Therefore Tungsten and its alloys have numerous applications, most notably in incandescent light bulb filaments, X-ray tubes (as both the filament and target), electrodes in TIG welding, superalloys, and radiation shielding.

Tungsten has a melting point of 3410+/-20°C and the lowest vapor pressure of the metals. At temperatures exceeding 1650°C, it has the highest tensile strength. Impure tungsten metal is quite brittle, making it difficult to work. But pure tungsten can be cut with a saw, spun, drawn, forged, and extruded.

Best, the Netherlands based medical Imaging component manufacturer Smit Röntgen, a Philips brand, started to research the potential of additive manufacturing pure Tungsten products, as a business opportunity a decade ago. By collaborating with specialists in the field, Smit Röntgen is able to offer pure Tungsten products made by Direct Metal Laser Sintering. This additive process constructs a 3D product from a digital design, by selectively solidifying thin layers of pure Tungsten according to a digital design.

With this unique technology freeform parts made out of pure tungsten can be manufactured. The laser sintering technology offers a great freedom of design and an unparalleled short design cycle: No expensive and inflexible moulds are required, and it takes only 48 hours to transform a CAD model into a final product. In addition, the process is sustainable and has low power consumption. Hardly any waste is produced during the production process and the product is 100% recyclable.

Pure tungsten is an excellent X-ray absorber, is resilient to high temperature exposure, and is environmentally safe (RoHS compliant). This technology enables high volume production of customized tungsten parts with primary advantages like design freedom, part variation and low set-up costs.

Smit Röntgen is now able to accommodate to individual customer needs and wants. “When talking to major players in medical and non-medical fields, it becomes evident that being able to 3D print pure Tungsten parts does attract global attention. By mastering this technique, the possibilities for creating new innovative products and niche markets are endless,” explains Pieter Nuijts, Marketing and Sales at Smit Röntgen.